2020考研:高等數(shù)學各章節(jié)的定理定義總結

最后更新時間:2019-08-27 17:58:20
輔導課程:暑期集訓 在線咨詢
復習緊張,焦頭爛額?逆風輕襲,來跨考秋季集訓營,幫你尋方法,定方案! 了解一下>>

  作為考研課程中的公共課程,數(shù)學在其中起著至關重要的作用。高等數(shù)學在某種程度上是很多同學的老大難,往年考生的得分不是很理想,大家要重視起來。關于高等數(shù)學復習,下面小編整理了2020考研高等數(shù)學各章節(jié)的定理定義總結,一起來看看吧 。

  第一章 函數(shù)與極限

  1、函數(shù)的有界性在定義域內(nèi)有f(x)≥K1則函數(shù)f(x)在定義域上有下界,K1為下界;如果有f(x)≤K2,則有上界,K2稱為上界。函數(shù)f(x)在定義域內(nèi)有界的充分必要條件是在定義域內(nèi)既有上界又有下界。

  2、數(shù)列的極限定理(極限的唯一性)數(shù)列{xn}不能同時收斂于兩個不同的極限。

  定理(收斂數(shù)列的有界性)如果數(shù)列{xn}收斂,那么數(shù)列{xn}一定有界。

  如果數(shù)列{xn}無界,那么數(shù)列{xn}一定發(fā)散;但如果數(shù)列{xn}有界,卻不能斷定數(shù)列{xn}一定收斂,例如數(shù)列1,-1,1,-1,(-1)n+1…該數(shù)列有界但是發(fā)散,所以數(shù)列有界是數(shù)列收斂的必要條件而不是充分條件。

  定理(收斂數(shù)列與其子數(shù)列的關系)如果數(shù)列{xn}收斂于a,那么它的任一子數(shù)列也收斂于a.如果數(shù)列{xn}有兩個子數(shù)列收斂于不同的極限,那么數(shù)列{xn}是發(fā)散的,如數(shù)列1,-1,1,-1,(-1)n+1…中子數(shù)列{x2k-1}收斂于1,{xnk}收斂于-1,{xn}卻是發(fā)散的;同時一個發(fā)散的數(shù)列的子數(shù)列也有可能是收斂的。

  3、函數(shù)的極限函數(shù)極限的定義中0<|x-x0|表示x≠x0,所以x→x0時f(x)有沒有極限與f(x)在點x0有沒有定義無關。

  定理(極限的局部保號性)如果lim(x→x0)時f(x)=A,而且A>0(或A<0),就存在著點那么x0的某一去心鄰域,當x在該鄰域內(nèi)時就有f(x)>0(或f(x)>0),反之也成立。

  函數(shù)f(x)當x→x0時極限存在的充分必要條件是左極限右極限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等則limf(x)不存在。

  一般的說,如果lim(x→∞)f(x)=c,則直線y=c是函數(shù)y=f(x)的圖形水平漸近線。如果lim(x→x0)f(x)=∞,則直線x=x0是函數(shù)y=f(x)圖形的鉛直漸近線。

  4、極限運算法則定理有限個無窮小之和也是無窮小;有界函數(shù)與無窮小的乘積是無窮小;常數(shù)與無窮小的乘積是無窮小;有限個無窮小的乘積也是無窮小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.

  5、極限存在準則兩個重要極限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夾逼準則如果數(shù)列{xn}、{yn}、{zn}滿足下列條件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,對于函數(shù)該準則也成立。

  單調(diào)有界數(shù)列必有極限。

  6、函數(shù)的連續(xù)性設函數(shù)y=f(x)在點x0的某一鄰域內(nèi)有定義,如果函數(shù)f(x)當x→x0時的極限存在,且等于它在點x0處的函數(shù)值f(x0),即lim(x→x0)f(x)=f(x0),那么就稱函數(shù)f(x)在點x0處連續(xù)。

  不連續(xù)情形:1、在點x=x0沒有定義;2、雖在x=x0有定義但lim(x→x0)f(x)不存在;3、雖在x=x0有定義且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)時則稱函數(shù)在x0處不連續(xù)或間斷。

  如果x0是函數(shù)f(x)的間斷點,但左極限及右極限都存在,則稱x0為函數(shù)f(x)的第一類間斷點(左右極限相等者稱可去間斷點,不相等者稱為跳躍間斷點)。非第一類間斷點的任何間斷點都稱為第二類間斷點(無窮間斷點和震蕩間斷點)。

  定理有限個在某點連續(xù)的函數(shù)的和、積、商(分母不為0)是個在該點連續(xù)的函數(shù)。

  定理如果函數(shù)f(x)在區(qū)間Ix上單調(diào)增加或減少且連續(xù),那么它的反函數(shù)x=f(y)在對應的區(qū)間Iy={y|y=f(x),x∈Ix}上單調(diào)增加或減少且連續(xù)。反三角函數(shù)在他們的定義域內(nèi)都是連續(xù)的。

  定理(最大值最小值定理)在閉區(qū)間上連續(xù)的函數(shù)在該區(qū)間上一定有最大值和最小值。如果函數(shù)在開區(qū)間內(nèi)連續(xù)或函數(shù)在閉區(qū)間上有間斷點,那么函數(shù)在該區(qū)間上就不一定有最大值和最小值。

  定理(有界性定理)在閉區(qū)間上連續(xù)的函數(shù)一定在該區(qū)間上有界,即m≤f(x)≤M.定理(零點定理)設函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),且 f(a)與f(b)異號(即f(a)×f(b)<0),那么在開區(qū)間(a,b)內(nèi)至少有函數(shù)f(x)的一個零點,即至少有一點 ξ(a<ξ

  推論在閉區(qū)間上連續(xù)的函數(shù)必取得介于最大值M與最小值m之間的任何值。

  第二章 導數(shù)與微分

  1、導數(shù)存在的充分必要條件函數(shù)f(x)在點x0處可導的充分必要條件是在點x0處的左極限lim(h→-0)[f(x0+h)-f(x0)]/h 及右極限lim(h→+0)[f(x0+h)-f(x0)]/h都存在且相等,即左導數(shù)f-′(x0)右導數(shù)f+′(x0)存在相等。

  2、函數(shù)f(x)在點x0處可導=>函數(shù)在該點處連續(xù);函數(shù)f(x)在點x0處連續(xù)≠>在該點可導。即函數(shù)在某點連續(xù)是函數(shù)在該點可導的必要條件而不是充分條件。

  3、原函數(shù)可導則反函數(shù)也可導,且反函數(shù)的導數(shù)是原函數(shù)導數(shù)的倒數(shù)。

  4、函數(shù)f(x)在點x0處可微=>函數(shù)在該點處可導;函數(shù)f(x)在點x0處可微的充分必要條件是函數(shù)在該點處可導。

  第三章 中值定理與導數(shù)的應用

  1、定理(羅爾定理)如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內(nèi)可導,且在區(qū)間端點的函數(shù)值相等,即f(a)=f(b),那么在開區(qū)間(a,b)內(nèi)至少有一點ξ(a<ξ

  2、定理(拉格朗日中值定理)如果函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內(nèi)可導,那么在開區(qū)間(a,b)內(nèi)至少有一點 ξ(a<ξ

  3、定理(柯西中值定理)如果函數(shù)f(x)及F(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內(nèi)可導,且F'(x)在(a,b)內(nèi)的每一點處均不為零,那么在開區(qū)間(a,b)內(nèi)至少有一點ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ)成立。

  4、洛必達法則應用條件只能用與未定型諸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞ 0等形式。

  5、函數(shù)單調(diào)性的判定法設函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內(nèi)可導,那么:(1)如果在(a,b)內(nèi) f'(x)>0,那么函數(shù)f(x)在[a,b]上單調(diào)增加;(2)如果在(a,b)內(nèi)f’(x)<0,那么函數(shù)f(x)在[a,b]上單調(diào)減少。

  如果函數(shù)在定義區(qū)間上連續(xù),除去有限個導數(shù)不存在的點外導數(shù)存在且連續(xù),那么只要用方程f'(x)=0的根及f’(x)不存在的點來劃分函數(shù)f(x)的定義區(qū)間,就能保證f'(x)在各個部分區(qū)間內(nèi)保持固定符號,因而函數(shù)f(x)在每個部分區(qū)間上單調(diào)。

  6、函數(shù)的極值如果函數(shù)f(x)在區(qū)間(a,b)內(nèi)有定義,x0是(a,b)內(nèi)的一個點,如果存在著點x0的一個去心鄰域,對于這去心鄰域內(nèi)的任何點x,f(x)f(x0)均成立,就稱f(x0)是函數(shù)f(x)的一個極小值。

  在函數(shù)取得極值處,曲線上的切線是水平的,但曲線上有水平曲線的地方,函數(shù)不一定取得極值,即可導函數(shù)的極值點必定是它的駐點(導數(shù)為0的點),但函數(shù)的駐點卻不一定是極值點。

  定理(函數(shù)取得極值的必要條件)設函數(shù)f(x)在x0處可導,且在x0處取得極值,那么函數(shù)在x0的導數(shù)為零,即f'(x0)=0.定理(函數(shù)取得極值的第一種充分條件)設函數(shù)f(x)在x0一個鄰域內(nèi)可導,且f’(x0)=0,那么:(1)如果當x取x0左側臨近的值時,f'(x)恒為正;當x去 x0右側臨近的值時,f’(x)恒為負,那么函數(shù)f(x)在x0處取得極大值;(2)如果當x取x0左側臨近的值時,f'(x)恒為負;當x去x0右側臨近的值時,f’(x)恒為正,那么函數(shù)f(x)在x0處取得極小值;(3)如果當x取x0左右兩側臨近的值時,f'(x)恒為正或恒為負,那么函數(shù) f(x)在x0處沒有極值。

  定理(函數(shù)取得極值的第二種充分條件)設函數(shù)f(x)在x0處具有二階導數(shù)且f'(x0)=0,f''(x0)≠0那么:(1)當f''(x0)& lt;0時,函數(shù)f(x)在x0處取得極大值;(2)當f''(x0)>0時,函數(shù)f(x)在x0處取得極小值;駐點有可能是極值點,不是駐點也有可能是極值點。

  7、函數(shù)的凹凸性及其判定設f(x)在區(qū)間Ix上連續(xù),如果對任意兩點x1,x2恒有f[(x1+x2)/2]<[f(x1)+f(x1)] /2,那么稱f(x)在區(qū)間Ix上圖形是凹的;如果恒有f[(x1+x2)/2]>[f(x1)+f(x1)]/2,那么稱f(x)在區(qū)間Ix上圖形是凸的。

  定理設函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內(nèi)具有一階和二階導數(shù),那么(1)若在(a,b)內(nèi)f'’(x)>0,則 f(x)在閉區(qū)間[a,b]上的圖形是凹的;(2)若在(a,b)內(nèi)f'’(x)<0,則f(x)在閉區(qū)間[a,b]上的圖形是凸的。

  判斷曲線拐點(凹凸分界點)的步驟(1)求出f'’(x);(2)令f'’(x)=0,解出這方程在區(qū)間(a,b)內(nèi)的實根;(3)對于(2)中解出的每一個實根x0,檢查f'’(x)在x0左右兩側鄰近的符號,如果f'’(x)在x0左右兩側鄰近分別保持一定的符號,那么當兩側的符號相反時,點 (x0,f(x0))是拐點,當兩側的符號相同時,點(x0,f(x0))不是拐點。

  在做函數(shù)圖形的時候,如果函數(shù)有間斷點或?qū)?shù)不存在的點,這些點也要作為分點。

  第四章 不定積分

  1、原函數(shù)存在定理定理如果函數(shù)f(x)在區(qū)間I上連續(xù),那么在區(qū)間I上存在可導函數(shù)F(x),使對任一x∈I都有F'(x)=f(x);簡單的說連續(xù)函數(shù)一定有原函數(shù)。

  分部積分發(fā)如果被積函數(shù)是冪函數(shù)和正余弦或冪函數(shù)和指數(shù)函數(shù)的乘積,就可以考慮用分部積分法,并設冪函數(shù)和指數(shù)函數(shù)為u,這樣用一次分部積分法就可以使冪函數(shù)的冪降低一次。如果被積函數(shù)是冪函數(shù)和對數(shù)函數(shù)或冪函數(shù)和反三角函數(shù)的乘積,就可設對數(shù)和反三角函數(shù)為u.

  2、對于初等函數(shù)來說,在其定義區(qū)間上,它的原函數(shù)一定存在,但原函數(shù)不一定都是初等函數(shù)。

  第五章 定積分

  1、定積分解決的典型問題(1)曲邊梯形的面積(2)變速直線運動的路程

  2、函數(shù)可積的充分條件定理設f(x)在區(qū)間[a,b]上連續(xù),則f(x)在區(qū)間[a,b]上可積,即連續(xù)=>可積。

  定理設f(x)在區(qū)間[a,b]上有界,且只有有限個間斷點,則f(x)在區(qū)間[a,b]上可積。

  3、定積分的若干重要性質(zhì)性質(zhì)如果在區(qū)間[a,b]上f(x)≥0則∫abf(x)dx≥0.推論如果在區(qū)間[a,b]上f(x)≤g(x)則 ∫abf(x)dx≤∫abg(x)dx.推論|∫abf(x)dx|≤∫ab|f(x)|dx.性質(zhì)設M及m分別是函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值,則m(b-a)≤∫abf(x)dx≤M(b-a),該性質(zhì)說明由被積函數(shù)在積分區(qū)間上的最大值及最小值可以估計積分值的大致范圍。

  性質(zhì)(定積分中值定理)如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),則在積分區(qū)間[a,b]上至少存在一個點ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。

  4、關于廣義積分設函數(shù)f(x)在區(qū)間[a,b]上除點c(a

  第六章 定積分的應用

  求平面圖形的面積(曲線圍成的面積)

  直角坐標系下(含參數(shù)與不含參數(shù))

  極坐標系下(r,θ,x=rcosθ,y=rsinθ)(扇形面積公式S=R2θ/2)

  旋轉體體積(由連續(xù)曲線、直線及坐標軸所圍成的面積繞坐標軸旋轉而成)(且體積V=∫abπ[f(x)]2dx,其中f(x)指曲線的方程)

  平行截面面積為已知的立體體積(V=∫abA(x)dx,其中A(x)為截面面積)

  功、水壓力、引力

  函數(shù)的平均值(平均值y=1/(b-a)*∫abf(x)dx)

  第七章 多元函數(shù)微分法及其應用

  1、多元函數(shù)極限存在的條件極限存在是指P(x,y)以任何方式趨于P0(x0,y0)時,函數(shù)都無限接近于A,如果P(x,y)以某一特殊方式,例如沿著一條定直線或定曲線趨于P0(x0,y0)時,即使函數(shù)無限接近某一確定值,我們還不能由此斷定函數(shù)極限存在。反過來,如果當P(x,y)以不同方式趨于P0(x0,y0)時,函數(shù)趨于不同的值,那么就可以斷定這函數(shù)的極限不存在。例如函數(shù):f(x,y)= {0(xy)/(x^2+y^2)x^2+y^2≠0

  2、多元函數(shù)的連續(xù)性定義設函數(shù)f(x,y)在開區(qū)域(或閉區(qū)域)D內(nèi)有定義,P0(x0,y0)是D的內(nèi)點或邊界點且P0∈D,如果lim(x→x0,y→y0)f(x,y)=f(x0,y0)則稱f(x,y)在點P0(x0,y0)連續(xù)。

  性質(zhì)(最大值和最小值定理)在有界閉區(qū)域D上的多元連續(xù)函數(shù),在D上一定有最大值和最小值。

  性質(zhì)(介值定理)在有界閉區(qū)域D上的多元連續(xù)函數(shù),如果在D上取得兩個不同的函數(shù)值,則它在D上取得介于這兩個值之間的任何值至少一次。

  3、多元函數(shù)的連續(xù)與可導如果一元函數(shù)在某點具有導數(shù),則它在該點必定連續(xù),但對于多元函數(shù)來說,即使各偏導數(shù)在某點都存在,也不能保證函數(shù)在該點連續(xù)。這是因為各偏導數(shù)存在只能保證點P沿著平行于坐標軸的方向趨于P0時,函數(shù)值f(P)趨于f(P0),但不能保證點P按任何方式趨于P0時,函數(shù)值 f(P)都趨于f(P0)。

  4、多元函數(shù)可微的必要條件一元函數(shù)在某點的導數(shù)存在是微分存在的充分必要條件,但多元函數(shù)各偏導數(shù)存在只是全微分存在的必要條件而不是充分條件,即可微=>可偏導。

  5、多元函數(shù)可微的充分條件定理(充分條件)如果函數(shù)z=f(x,y)的偏導數(shù)存在且在點(x,y)連續(xù),則函數(shù)在該點可微分。

  6.多元函數(shù)極值存在的必要、充分條件定理(必要條件)設函數(shù)z=f(x,y)在點(x0,y0)具有偏導數(shù),且在點(x0,y0)處有極值,則它在該點的偏導數(shù)必為零。

  定理(充分條件)設函數(shù)z=f(x,y)在點(x0,y0)的某鄰域內(nèi)連續(xù)且有一階及二階連續(xù)偏導數(shù),又 fx(x0,y0)=0,fy(x0,y0)=0,令fxx(x0,y0)=0=A,fxy(x0,y0)=B,fyy(x0,y0)=C,則 f(x,y)在點(x0,y0)處是否取得極值的條件如下:(1)AC-B2>0時具有極值,且當A<0時有極大值,當A>0時有極小值;(2)AC-B2<0時沒有極值;(3)AC-B2=0時可能有也可能沒有。

  7、多元函數(shù)極值存在的解法(1)解方程組fx(x,y)=0,fy(x,y)=0求的一切實數(shù)解,即可求得一切駐點。

  (2)對于每一個駐點(x0,y0),求出二階偏導數(shù)的值A、B、C.(3)定出AC-B2的符號,按充分條件進行判定f(x0,y0)是否是極大值、極小值。

  注意:在考慮函數(shù)的極值問題時,除了考慮函數(shù)的駐點外,如果有偏導數(shù)不存在的點,那么對這些點也應當考慮在內(nèi)。

  第八章 二重積分

  1、二重積分的一些應用曲頂柱體的體積曲面的面積(A=∫∫√[1+f2x(x,y)+f2y(x,y)]dσ)

  平面薄片的質(zhì)量平面薄片的重心坐標(x=1/A∫∫xdσ,y=1/A∫∫ydσ;其中A=∫∫dσ為閉區(qū)域D的面積。

  平面薄片的轉動慣量(Ix=∫∫y2ρ(x,y)dσ,Iy=∫∫x2ρ(x,y)dσ;其中ρ(x,y)為在點(x,y)處的密度。

  平面薄片對質(zhì)點的引力(FxFyFz)

  2、二重積分存在的條件當f(x,y)在閉區(qū)域D上連續(xù)時,極限存在,故函數(shù)f(x,y)在D上的二重積分必定存在。

  3、二重積分的一些重要性質(zhì)性質(zhì)如果在D上,f(x,y)≤ψ(x,y),則有不等式∫∫f(x,y)dxdy≤∫∫ψ(x,y)dxdy,特殊地由于-|f(x,y)|≤f(x,y)≤|f(x,y)|又有不等式|∫∫f(x,y)dxdy|≤∫∫|f(x,y)|dxdy.性質(zhì)設M,m分別是 f(x,y)在閉區(qū)域D上的最大值和最小值,σ是D的面積,則有mσ≤∫∫f(x,y)dσ≤Mσ。

  性質(zhì)(二重積分的中值定理)設函數(shù)f(x,y)在閉區(qū)域D上連續(xù),σ是D的面積,則在D上至少存在一點(ξ,η)使得下式成立:∫∫f(x,y)dσ=f(ξ,η)*σ4、二重積分中標量在直角與極坐標系中的轉換把二重積分從直角坐標系換為極坐標系,只要把被積函數(shù)中的x,y 分別換成ycosθ、rsinθ,并把直角坐標系中的面積元素dxd

  (注:本文來自網(wǎng)絡,如有侵權,請聯(lián)系刪除)

跨考考研課程

班型 定向班型 開班時間 高定班 標準班 課程介紹 咨詢
秋季集訓 沖刺班 9.10-12.20 168000 24800起 小班面授+專業(yè)課1對1+專業(yè)課定向輔導+協(xié)議加強課程(高定班)+專屬規(guī)劃答疑(高定班)+精細化答疑+復試資源(高定班)+復試課包(高定班)+復試指導(高定班)+復試班主任1v1服務(高定班)+復試面授密訓(高定班)+復試1v1(高定班)
2023集訓暢學 非定向(政英班/數(shù)政英班) 每月20日 22800起(協(xié)議班) 13800起 先行階在線課程+基礎階在線課程+強化階在線課程+真題階在線課程+沖刺階在線課程+專業(yè)課針對性一對一課程+班主任全程督學服務+全程規(guī)劃體系+全程測試體系+全程精細化答疑+擇校擇專業(yè)能力定位體系+全年關鍵環(huán)節(jié)指導體系+初試加強課+初試專屬服務+復試全科標準班服務

①凡本網(wǎng)注明“稿件來源:跨考網(wǎng)”的所有文字、圖片和音視頻稿件,版權均屬北京尚學碩博教育咨詢有限公司(含本網(wǎng)和跨考網(wǎng))所有,任何媒體、網(wǎng)站或個人未經(jīng)本網(wǎng)協(xié)議授權不得轉載、鏈接、轉帖或以其他任何方式復制、發(fā)表。已經(jīng)本網(wǎng)協(xié)議授權的媒體、網(wǎng)站,在下載使用時必須注明“稿件來源,跨考網(wǎng)”,違者本網(wǎng)將依法追究法律責任。

②本網(wǎng)未注明“稿件來源:跨考網(wǎng)”的文/圖等稿件均為轉載稿,本網(wǎng)轉載僅基于傳遞更多信息之目的,并不意味著再通轉載稿的觀點或證實其內(nèi)容的真實性。如其他媒體、網(wǎng)站或個人從本網(wǎng)下載使用,必須保留本網(wǎng)注明的“稿件來源”,并自負版權等法律責任。如擅自篡改為“稿件來源:跨考網(wǎng)”,本網(wǎng)將依法追究法律責任。

③如本網(wǎng)轉載稿涉及版權等問題,請作者見稿后在兩周內(nèi)速來電與跨考網(wǎng)聯(lián)系,電話:400-883-2220